12,729 research outputs found

    A Binary Scenario for the Formation of Strongly Magnetized White Dwarfs

    Full text link
    Since their initial discovery, the origin of isolated white dwarfs (WDs) with magnetic fields in excess of ∼\sim1 MG has remained a mystery. Recently, the formation of these high-field magnetic WDs has been observationally linked to strong binary interactions incurred during post-main-sequence evolution. Planetary, brown dwarf or stellar companions located within a few AU of main-sequence stars may become engulfed during the primary's expansion off the main sequence. Sufficiently low-mass companions in-spiral inside a common envelope until they are tidally shredded near the natal white dwarf. Formation of an accretion disk from the disrupted companion provides a source of turbulence and shear which act to amplify magnetic fields and transport them to the WD surface. We show that these disk-generated fields explain the observed range of magnetic field strengths for isolated, high-field magnetic WDs. Additionally, we discuss a high-mass binary analogue which generates a strongly-magnetized WD core inside a pre-collapse, massive star. Subsequent core-collapse to a neutron star may produce a magnetar.Comment: To appear in the Proceedings of the 2nd International Symposium on Strong Electromagnetic Fields and Neutron Stars, Varadero, Cub

    SwSt 1: an O-rich planetary nebula around a C-rich central star

    Get PDF
    The hydrogen-deficient carbon-rich [WCL] type central star HD167362 and its oxygen-rich planetary nebula (PN) SwSt~1 are investigated. The nebular chemistry might indicate a recent origin for the carbon-rich stellar spectrum. Its stellar and nebular properties might therefore provide further understanding of the origin of the [WCL] central star class. The UV-IR stellar spectra are modelled with state of the codes and show ~40kK central star with a wind and a C/O~3, indicative of efficient third dredge-up. The synthetic stellar flux distribution is used to model the high density, compact PN, which has a solar C/O ratio, is still enshrouded by 1200K and 230K dust shells and, reported here for the first time, in molecular hydrogen. Although it appears that the change in C/O ratio has been recent, the published spectroscopy since 1895 has been re-examined and no clear spectral change is seen. If an event occurred that has turned it into a hydrogen-deficient central star, it did not happen in the last 100 years.Comment: 31 pages, 19 figures (some are gif files), MNRAS in pres

    Wolf-Rayet nebulae as tracers of stellar ionizing fluxes: I. M1-67

    Get PDF
    We use WR124 (WN8h) and its associated nebula M1-67, to test theoretical non-LTE models for Wolf-Rayet (WR) stars. Lyman continuum ionizing flux distributions derived from a stellar analysis of WR124, are compared with nebular properties via photo-ionization modelling. Our study demonstrates the significant role that line blanketing plays in affecting the Lyman ionizing energy distribution of WR stars, of particular relevance to the study of HII regions containing young stellar populations. We confirm previous results that non-line blanketed WR energy distributions fail to explain the observed nebular properties of M1-67, such that the predicted ionizing spectrum is too hard. A line blanketed analysis of WR124 is carried out using the method of Hillier & Miller (1998), with stellar properties in accord with previous results, except that the inclusion of clumping in the stellar wind reduces its wind performance factor to only approx2. The ionizing spectrum of the line blanketed model is much softer than for a comparable temperature unblanketed case, such that negligible flux is emitted with energy above the HeI 504 edge. Photo-ionization modelling, incorporating the observed radial density distribution for M1-67 reveals excellent agreement with the observed nebular electron temperature, ionization balance and line strengths. An alternative stellar model of WR124 is calculated, following the technique of de Koter et al. (1997), augmented to include line blanketing following Schmutz et al. (1991). Good consistency is reached regarding the stellar properties of WR124, but agreement with the nebular properties of M1-67 is somewhat poorer than for the Hillier & Miller code.Comment: 12 pages, 5 figures, latex2e style file, Astronomy & Astrophysics (accepted

    A close look into the carbon disk at the core of the planetary nebula CPD-568032

    Get PDF
    We present high spatial resolution observations of the dusty core of the Planetary Nebula with Wolf-Rayet central star CPD-568032. These observations were taken with the mid-infrared interferometer VLTI/MIDI in imaging mode providing a typical 300 mas resolution and in interferometric mode using UT2-UT3 47m baseline providing a typical spatial resolution of 20 mas. The visible HST images exhibit a complex multilobal geometry dominated by faint lobes. The farthest structures are located at 7" from the star. The mid-IR environment of CPD-568032 is dominated by a compact source, barely resolved by a single UT telescope in a 8.7 micron filter. The infrared core is almost fully resolved with the three 40-45m projected baselines ranging from -5 to 51 degree but smooth oscillating fringes at low level have been detected in spectrally dispersed visibilities. This clear signal is interpreted in terms of a ring structure which would define the bright inner rim of the equatorial disk. Geometric models allowed us to derive the main geometrical parameters of the disk. For instance, a reasonably good fit is reached with an achromatic and elliptical truncated Gaussian with a radius of 97+/-11 AU, an inclination of 28+/-7 degree and a PA for the major axis at 345+/-7 degree. Furthermore, we performed some radiative transfer modeling aimed at further constraining the geometry and mass content of the disk, by taking into account the MIDI dispersed visibilities, spectra, and the large aperture SED of the source. These models show that the disk is mostly optically thin in the N band and highly flared.Comment: Paper accepted in A&

    Evolution of the disc atmosphere in the X-ray binary MXB 1659-298, during its 2015-2017 outburst

    Get PDF
    We report on the evolution of the X-ray emission of the accreting neutron star (NS) low mass X-ray binary (LMXB), MXB 1659-298, during its most recent outburst in 2015-2017. We detected 60 absorption lines during the soft state (of which 21 at more than 3 σ\sigma), that disappeared in the hard state (e.g., the Fe xxv and Fe xxvi lines). The absorbing plasma is at rest, likely part of the accretion disc atmosphere. The bulk of the absorption features can be reproduced by a high column density (log(NH/cm−2)∼23.5log(N_H/cm^{-2})\sim23.5) of highly ionised (log(ξ/erg cm s−1)∼3.8log(\xi/erg~cm~s^{-1})\sim3.8) plasma. Its disappearance during the hard state is likely the consequence of a thermal photo-ionisation instability. MXB 1659-298's continuum emission can be described by the sum of an absorbed disk black body and its Comptonised emission, plus a black body component. The observed spectral evolution with state is in line with that typically observed in atoll and stellar mass black hole LMXB. The presence of a relativistic Fe Kα\alpha disk-line is required during the soft state. We also tentatively detect the Fe xxii doublet, whose ratio suggests an electron density of the absorber of ne>1013cm−3n_e>10^{13} cm^{-3}, hence, the absorber is likely located at <7×104rg<7\times10^4 r_g from the illuminating source, well inside the Compton and outer disc radii. MXB 1659-298 is the third well monitored atoll LMXB showcasing intense Fe xxv and Fe xxvi absorption during the soft state that disappears during the hard state.Comment: MNRAS in pres

    A Spitzer view of protoplanetary disks in the gamma Velorum cluster

    Get PDF
    We present new Spitzer Space Telescope observations of stars in the young ~5 Myr gamma Velorum stellar cluster. Combining optical and 2MASS photometry, we have selected 579 stars as candidate members of the cluster. With the addition of the Spitzer mid-infrared data, we have identified 5 debris disks around A-type stars, and 5-6 debris disks around solar-type stars, indicating that the strong radiation field in the cluster does not completely suppress the production of planetesimals in the disks of cluster members. However, we find some evidence that the frequency of circumstellar primordial disks is lower, and the IR flux excesses are smaller than for disks around stellar populations with similar ages. This could be evidence for a relatively fast dissipation of circumstellar dust by the strong radiation field from the highest mass star(s) in the cluster. Another possibility is that gamma Velorum stellar cluster is slightly older than reported ages and the the low frequency of primordial disks reflects the fast disk dissipation observed at ~5 Myr.Comment: Accepted for publication in the Astrophysical Journal: 32 pages; 11 Figure
    • …
    corecore